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ABSTRACT: In internal rubber-mixing processes, data-driven soft sensors have become increasingly important for providing online

measurements for the Mooney viscosity information. Nevertheless, the prediction uncertainty of the model has rarely been explored.

Additionally, traditional viscosity prediction models are based on single models and, thus, may not be appropriate for complex proc-

esses with multiple recipes and shifting operating conditions. To address both problems simultaneously, we propose a new ensemble

Gaussian process regression (EGPR)-based modeling method. First, several local Gaussian process regression (GPR) models were built

with the training samples in each subclass. Then, the prediction uncertainty was adopted to evaluate the probabilistic relationship

between the new test sample and several local GPR models. Moreover, the prediction value and the prediction variance was generated

automatically with Bayesian inference. The prediction results in an industrial rubber-mixing process show the superiority of EGPR in

terms of prediction accuracy and reliability. VC 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41432.
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INTRODUCTION

The rubber-mixing process is the first and an important pro-

duction process in the rubber and tire industry. It can be

described as a very fast (ca. only 2–5 min), nonlinear, and time-

varying batch (or fed-bath) process performed in an internal

mixer. The Mooney viscosity, which can be likened to a com-

posite measurement of the viscoelastic behavior of an elastomer

and indirectly represents the molecular weight, is one of the key

quantities in the end-use properties in the rubber-mixing pro-

cess.1–14 To achieve an optimal and uniform product quality,

variation in the Mooney viscosity is expected to be small in a

fixed narrow distribution. However, it is difficult to accomplish

because of several major factors, which are described later:

1. It is still difficult and time-consuming to accurately predict the

mechanical properties of the rubber compound in terms of first

principles because of the complexity of the internal mixing pro-

cess. The intrinsically varying nature and different aggregate con-

ditions of raw materials make it difficult to know how these

factors will affect the final properties of compounds.2–5 Moreover,

the varying properties of natural or synthetic rubbers introduce

an amount of complexity and uncertainty to the mixing process.

2. The rubber compound properties are roughly influenced by

manual machine operations and the operators. Any upsets in

the feed and additives, for example, carbon black and oil, may

change the product properties.5 Additionally, the extent of

batch-to-batch reproducibility depends on the configuration of

the mixer and the mixing operating conditions, such as the

mixing steps, mixing temperature, mixing pressure, cooling effi-

ciency, and rotor power.7–14

3. The Mooney viscosity information can be only obtained from

laboratory analysis several hours later after a batch has been dis-

charged. Therefore, a plain feedback control of the viscosity is

impossible, and a dominant manner for controlling the viscosity

in the rubber industry is mainly based on process operators’

long-term experience and expertise.3,7–14

To overcome these embarrassments and ensure quality in the

final products, various empirical prediction models, including

artificial neural networks (ANNs),3–6 neuro-fuzzy systems,7 par-

tial least squares (PLS) and linear regression,8,9 support vector

machines (SVMs) and other kernel learning methods,10–12 and

Gaussian process regression (GPR),13,14 have been applied to

the online prediction of the viscosity information. Compared to

comprehensive mechanistic models, one main advantage of

data-driven soft-sensor models in chemical processes is that

they can generally be developed quickly without the need for a

substantial understanding of the phenomenology.15–19 Among
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these prediction models, PLS and other multivariate regression

methods can only extract the linear information from the mod-

eling data.8,9 In practice, many product qualities are believed to

have nonlinear relationships with the operating conditions. For

ANN and neuro-fuzzy systems, the determination of the net-

work complexity is still unsolved.20 SVMs, least squares support

vector machines (LSSVMs), and GPR-based soft-sensors have

attracted more attention recently because of their nonlinear

modeling ability.20–32 However, the parameter selection for an

SVM/LSSVM model is still difficult in chemical processes. Com-

pared with SVMs/LSSVMs, the GPR model can automatically

optimize its parameters with an iterative method.28 Additionally,

GPR can simultaneously provide the probabilistic information

for its prediction.28 However, this interesting property has been

investigated less in the application of GPR for Mooney viscosity

prediction.

In previous research, most existing data-driven modeling meth-

ods for the Mooney viscosity3–14 have focused on how to con-

struct a global prediction model. Actually, there are many recipes

for internal rubber-mixing processes. A single global model is

insufficient for capturing all of the process characteristics in dif-

ferent recipes. Although moving-window-based recursive soft sen-

sors can gradually be adapted to new operational conditions,

deciding how to choose a suitable moving-window size for com-

plex rubber-mixing processes is difficult.10,11,17 Additionally, most

recursive models may not function well in a new operational

region until a sufficient period of time has passed because of the

time delay when they adapt themselves to new operational condi-

tions.18 Recently, three GPR-based mixture models for the multi-

mode chemical processes have been proposed.30–32 However,

prediction uncertainty has rarely been integrated into traditional

prediction models, including previous GPR models. Additionally,

to the best of our knowledge, the multi-GPR-based modeling

method has not been applied to rubber-mixing processes yet.

In this article, considering the aforementioned factors, we pro-

pose a novel probabilistic ensemble Gaussian process regression

(EGPR) modeling method. First, a fuzzy c-means (FCM) clus-

tering approach33,34 was used to cluster all of the training sam-

ples into several subclasses. Then, several single GPR models

were trained with each subclass of samples. Moreover, they were

further assembled to improve the prediction reliability. In con-

trast to conventional ensemble strategies,35–37 the uncertainty

information of each single GPR model was analyzed, and a

Bayesian strategy was adopted. Finally, the prediction value, the

prediction variance and the status information are all obtained.

They can be provided for operators.

Briefly, this article is organized as follows. The FCM clustering

algorithm and several local GPR models for subclasses are for-

mulated in the EGPR Prediction Model section. Sequentially,

the novel EGPR-based soft sensor for the online evaluation and

prediction of a test sample is proposed in this section. The

EGPR method is evaluated by the Mooney viscosity prediction

in an industrial process in the Industrial Application: Mooney

Viscosity Online Prediction section. Comparison studies with

other methods are also investigated. Finally, concluding remarks

are made in the final section.

EGPR PREDICTION MODEL

FCM Clustering Approach

There are several recipes in an internal rubber-mixing process.

Each recipe has different sized samples. The samples in different

recipes may exhibit different characteristics. Additionally, for a

special recipe, samples with different operating conditions often

show distinguished properties. It is unsuitable to construct a

global model with all of the samples. Also, the samples should

be pretreated to divide them into some subgroups that can be

modeled in a relatively simple way.

The FCM clustering algorithm divides a set of samples into sev-

eral clusters such that samples within a given cluster have a

higher degree of similarity, whereas samples belonging to differ-

ent clusters have a higher degree of dissimilarity.33,34 It has been

widely applied to solve many clustering problems and has

shown superiority to k means.33,34 Therefore, FCM was adopted

to preprocess the training samples before the construction of a

prediction model. A set of training samples, X 5 (x1, x2, . . . xN),

was organized into L clusters by the minimization of the objec-

tive function J as follows:33,34

J U; cð Þ5
XL

i51

XN

j51

um
ij d2

ij

st
XL

i51

uij51;8j51; 2; . . . N

(1)

where st is subject to; uij is the relationship value of the jth

sample in the ith cluster; U is the related fuzzy partition matrix

consisting of uij within the interval of [0, 1]; c 5 (c1,c2,. . .cL) is

the cluster center matrix; dij 5 ||ci 2 xj|| is the Euclidean

distance-based similarity of xj and ci; m E [1,1] is the weight-

ing parameter, and the fuzziness of the clustering increases with

increasing m. In addition, the necessary conditions for minimiz-

ing eq. (1) are the update equations as follows:33,34

ci5

XN

j51
um

ij xjXN

j51
um

ij

(2)

uij5
1XL

l51

dij

dlj

� �2= m21ð Þ (3)

Detailed implementations of the iterative clustering scheme for

FCM are found in the literature.33,34 Finally, the initial training

set X can be clustered into L subclasses, which are described as

X 5 {X1, X2, . . . XL}.

Single GPR-Based Prediction Model for Subclasses

Generally, soft-sensor development in a nonlinear process based

on the GPR framework can be described as a problem whose

aim is to learn a model f that approximates a training set

S 5 {X, Y}, where X5fxigN
i51 and Y 5fyigN

i51 are the input and

output datasets with N samples, respectively. The initial set

S can be clustered into L subclasses denoted as S 5 {S1, S2, . . .
SL}. Each subclass with Nl samples can be described as

Sl5fXl ;Ylg5fxl;i; yl;igNl

i51 and N5
XL

i51
Nl . For the lth sub-

class, a general nonlinear GPR model provides a prediction

of the output variable for an input sample through Bayesian
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inference. For an output variable Yl 5 (yl,1, . . ., yl,Nl)
T, the GPR

model is the regression function with a Gaussian prior distribu-

tion and zero mean or, in a discrete form:28,29

Yl5 yl;1; . . . ; yl;Nl

� �T � Gð0;ClÞ (4)

where Cl is the Nl 3 Nl covariance matrix with the ijth element

defined by the covariance function Cl,ij 5 Cl*(xl,i, xl,j). A com-

mon covariance function can be defined as follows:28

Cl xl;i; xl;j

� �
5al;01al;1

XD

d51

xl;i:dxl;j:d1vl;0

exp 2
XD

d51

wld xl;i:d2xl;j:d

� �2

" #
1dijbl (5)

where xl,i,d is the dth component of the vector xl,i. The value

of dij is 1 if i 5 j; otherwise, it is equal to zero. hl 5 [al,0, al,1,

vl,0, wl,1, . . ., wl,D, bl]
T describes the hyperparameters vector

defining the covariance function. When both the linear and

nonlinear terms in the covariance function are combined, the

GPR model is capable of handling both linear and nonlinear

processes.28,29

Adopting a Bayesian approach to train a GPR model, the values

of the hyperparameters (hl) can be estimated by the maximiza-

tion of the following log likelihood function:28

J hlð Þ52
1

2
log det Clð Þ½ �2 1

2
Y T

l C21
l Yl2

Nl

2
log 2pð Þ (6)

This optimization problem can be solved with the derivative of

the log likelihood with respect to each hyperparameter given as

follows:28

@J

@hl

52
1

2
tr C21

l

@Cl

@hl

� �
1

1

2
Y T

l C21
l

@Cl

@hl

C21
l Yl (7)

where @Cl

@hl
can be obtained from the covariance function.

Detailed implementations for training a GPR model can be

found in Rasmussen and Williams.28 Also, the main computa-

tional load for training a GPR model is about O N 3
l

� �
, which is

always feasible for a moderate size of training data set (less than

several thousands) on a conventional computer. For larger data

sets, sparse training strategies may be required to reduce the

overall computational burden.38

Finally, this single GPR model (GPRl) for subclass Sl can be

obtained once hl is determined. As for a new test sample xt, the

predicted output of yt is also Gaussian with the mean (ŷl,t) and

variance ðr2
ŷ l;t
Þ, calculated as follows:28

ŷ l;t 5kT
l;t C21

l Yl (8)

r2
ŷ l;t

5kl;t 2kT
l;t C21

l kl;t (9)

where kl,t 5 [Cl (xt,xl,1), Cl (xt,xl,2), . . . Cl (xt,xl;Nl
)]T is the covari-

ance vector between the new input and the training samples

and kl,t 5 C(xt,xt) is the covariance of the new input. In sum-

mary, eq. (9) provides a confidence level on the prediction,

which is an appealing property of the GPR method.

Consequently, several single GPR models, denoted as GPRl,

l 5 1, . . ., L, can be constructed offline for different subclasses

with the aforementioned formulations, that is, eqs. (4–7). For

the online prediction of a new sample xt, both ŷl,t and r2
ŷ l;t

can

be obtained with eqs. (8) and (9).

Prediction Variance-Based Bayesian Ensemble of the GPR

Models

For a rubber-mixing process with several recipes, after the

FCM-based clustering, several GPR-based local prediction mod-

els can be built. For a new test sample xt, however, its predic-

tion model is not supposed to be known beforehand. It is

important to evaluate to which model it is most suitable (or

how to combine these existing local models in a reasonable

way). Without any process or expert knowledge, this should be

done purely by the data-driven method. Compared with SVM-

based deterministic models, prediction variances provide useful

information for the description of a model’s reliability. How-

ever, the prediction uncertainty has been neglected in previous

mixture GPR models for chemical processes. Additionally, the

applications of mixture GPR models to rubber-mixing processes

have never been investigated. In this section, a prediction

variance-based Bayesian method is proposed for exploring the

reliability of existing GPR-based prediction models. Moreover, a

probabilistic information-based ensemble strategy is formulated

to obtain a more reliably predictive result.

To evaluate the relationship between a local GPR model and the

new test sample xt, a prediction variance-based Bayesian infer-

ence is proposed to determine the probability of xt with each

GPR, l 5 1, . . ., L model, that is, P(GPR|xt), l 5 1, . . ., L, which

is given as follows:30,32

P GPRl jxtð Þ5 P xt jGPRlð ÞP GPRlð Þ
P xtð Þ

5
P xt jGPRlð ÞP GPRlð ÞXL

l51
P xt jGPRlð ÞP GPRlð Þ½ �

; l51; . . . ; L (10)

where P(GPRl), l 5 1, L, and P(xt|GPRl), l 5 1, . . ., L are the

prior probability and the conditional probability, respectively.

To calculate the posterior probability value, these two terms at

the right side of eq. (10) should be defined. Without any pro-

cess or expert knowledge, the prior probability for each local

GPR model can be simply defined as follows:30,32

P GPRlð Þ5 Nl

N
; l51; . . . ; L (11)

To determine the other terms in eq. (10), first, a relative root

prediction variance (RPV) item of this test sample for each sin-

gle GPR model can be further modified as follows:

vl;xt
5

ffiffiffiffiffiffiffiffi
r2

ŷ t ;l

q
ŷ t ;l

3100%5
rŷ t ;l

ŷ t ;l

3100%; l51; . . . ; L (12)

where the actual value of yt is unknown, so it is substituted by

its prediction with the related GPRl, l 5 1,. . ., L models, noted

as ŷt,l. The item rŷt,l can be used to describe the relative predic-

tion uncertainty for a sample with this special local model. The

value of rŷt,l is relatively large if the test sample xt is predicted

with an unsuitable model. Consequently, a larger value of vl,xt

generally means a larger uncertainty when this special GPR

model for online prediction is adopted. Because of this reason,

without a loss of generality, the conditional probability
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[P(xt|GPRl)] can be defined on the basis of an inverse relation-

ship of vl,xt:

P xt jGPRlð Þ5 1

vl;xt

; l51; . . . ; L (13)

Consequently, eq. (10) becomes

P GPRl jxtð Þ5 Nl

v
l;xt

XL

l51
Nl=vl;xtð Þ

; l51; . . . ; L (14)

On the basis of the probabilistic analysis approach, the use of

the prediction variance of local GPR models can determine the

probability between xt and each local GPR model. This proba-

bilistic information of local predictions can be combined to

form the final prediction result. Therefore, an EGPR modeling

method for multirecipe rubber-mixing processes is formulated

with the aforementioned probability analysis. The mean and

variance values of the final predictive distribution can be calcu-

lated as follows:

ŷ t 5
XL

l51

P GPRl jxtð Þŷ l;t (15)

r2
ŷ t

5
XL

l51

P GPRl jxtð Þr2
ŷ l;t

(16)

In summary, the algorithm implement of the EGPR modeling

method is illustrated in Figure 1. The left part mainly includes

an offline clustering and modeling stage. Other clustering algo-

rithms, for example, the finite Gaussian mixture model,32 can

be used for clustering. The right part is the online prediction

method. It is relatively a simple task to construct several single

local GPR models, whereas the determination of how to predict

a new test sample with suitable models is difficult, especially for

those samples in recipe transitions or new operating modes

with complex characteristics. From an engineering standpoint,

this method can be simply implemented, and the interpretation

of the prediction result is also straightforward. Although the

single GPR model is only efficient for quality prediction in its

specific region, the ensemble GPR model can handle multiple

recipes and different operational modes. Through the evaluation

of the new test sample, a probabilistic prediction result can be

generated. Therefore, the EGPR method is more appropriate for

online prediction of the Mooney viscosity with multiple recipes

in rubber-mixing processes.

INDUSTRIAL APPLICATION: MOONEY VISCOSITY ONLINE
PREDICTION

The flowchart of the modeling and online prediction of the

Mooney viscosity in an industrial rubber-mixing process is

shown in Figure 2. The manufacturer was located in southeast

China. Because commercial secrets, further details are not pro-

vided. The rubber compound samples for the laboratory assay

were taken from a continuous rubber sheet roughly according

to the end discharge time. The Mooney viscosity assay results

were obtained via a shearing disk viscometer at a standard-

prescribed elevated temperature. The Mooney viscosity basically

reflects the degree of polymerization and the molecular weight

of the mixed rubber. For example, the measurement result is

reported in the form 50ML, 1 1 4 (100�C), where 50 M is the

Mooney viscosity value (where M is its unit), L indicates the

use of the large 1.5-in. rotor, 1 is the time in minutes for which

the specimen is permitted to warm in the machine before the

motor is started and the reading is taken, 4 is the time in

minutes that the rotor runs, and 100�C is the temperature of

the test.12,13 According to the physical and chemical

Figure 1. Online prediction of the rubber properties with the Bayesian EGPR-based soft-sensor modeling method for a rubber-mixing process with sev-

eral recipes. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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mechanisms, the Mooney viscosity can be measured after the

mixed rubber has been conditioned for a given time (ca. 4 h).

Therefore, the measurement time delay is much larger than the

period of mixing process.

As mentioned previously, the properties of rubber materials and

additives play an important role in the Mooney viscosity. Addi-

tionally, the measured variables of the process, including the

mixing temperature, mixing energy, mixing power, mixing pres-

sure, and mixing duration in the chamber of the internal mixer,

can be selected as secondary variables according to technology

analysis.8–13 Therefore, all of the information obtained from the

database during the process can be used to form the input vari-

ables of the prediction model. Additionally, as prior require-

ments, the reliable sensor measurements and data collections

play crucial roles in the process modeling.16 After simple pre-

processing of the modeling set with 3-r criterion, most of the

outlier samples and missing values are removed. Finally, about

200 samples of six recipes collected in a product line were inves-

tigated in this study. Four recipes of the samples were used for

training and the remaining two recipes were for testing.

In this study, the GPR and SVM methods were investigated for

comparison, mainly because they were very popular in the

chemical process modeling area.9–13,20–32 The Gaussian kernel

function {K(x1, x2) 5 exp[2||x1 2 x2||/r] (with r as a positive

parameter)} may be the most common kernel in the SVM

method9–13,20–27 and thus is used for SVM. The parameters of

SVM were selected with the fivefold cross-validation approach.

The simulation environment in this case was MatLab V2009b

with a CPU main frequency of 2.3 GHz and 4 GB of memory.

To quantitatively evaluate the prediction performance of these

prediction models, three performance indices, including the

root mean square error (RMSE), relative root mean square error

(RE), and maximal absolute error (MAE), are defined as

follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNtst

i51

ŷ i2yi

� �2
=Ntst

vuut (17)

RE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNtst

i51

ŷ i2yi

yi

� �2

=Ntst

vuut (18)

MAE5max jŷ i2yij; for i51; � � � ;Ntst (19)

where ŷi denotes the prediction of yi, that is, the Mooney vis-

cosity of the compound, and Ntst is the number of testing

samples.

To investigate the data distribution of the training and testing

samples, as an illustrated case shown in Figure 3, the relation-

ships between the first to third process input variables were

nonlinearly correlated with each other. Additionally, the training

samples were distributed irregularly with multiple groups. Some

areas had more data samples, whereas other areas showed sparse

data distribution. Therefore, only a single global model was not

enough to describe all of the process characteristics distributed
Figure 2. Mooney viscosity online prediction flowchart in an industrial

rubber-mixing process. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 3. Process input variable relationships in the industrial rubber-

mixing process (the training and testing data sets). [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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in multiple recipes. To investigate the soft-sensor modeling

methods, as also shown in Figure 3, the test samples exhibited

different process operating conditions compared with the train-

ing samples.

In this case, after the FCM clustering, four clusters were

obtained. The distribution of each subclass was separated from

other subclasses. Generally, each class had its own characteris-

tics; this was conducive to the modeling of the sub-GPR mod-

els. Then, four sub-GPR models were simply trained with the

samples in each subclass (formulated in the Single GPR-Based

Prediction Model for Subclasses section). For online prediction

of a test sample, the results produced by these sub-GPR models

were combined by the Bayesian method described in the Predic-

tion Variance-Based Bayesian Ensemble of the GPR Models

section.

The overall prediction results of the EGPR-based multimodels

and the single GPR/SVM models are shown in Figure 4. The

online prediction times for the test samples were less than 1 s

for all methods. Obviously, the ensemble model showed an

improved prediction performance over its single model. The

corresponding box plots of the prediction errors with all three

different prediction models are shown in Figure 5. On each box

(e.g., EGPR-based multimodels), the edges of the box are the

first and third quartiles, and the band inside the box shows the

second quartile (i.e., the median). The whiskers above and

below the box show the locations of the minimum and maxi-

mum. We found that the proposed EGPR method had the nar-

rowest ranges of prediction errors; this implied the best

prediction performance among the three methods. Additionally,

the details of the online prediction comparisons of the Mooney

viscosity among the EGPR, GPR, and SVM methods are tabu-

lated in Table I. The results of the RMSE, RE, and MAE indices

in Table I show that EGPR obtained a better distribution of the

prediction errors compared to the other approaches because the

GPR and SVM models showed unreliable prediction results in

some test samples, as also shown in Figure 4.

For the online prediction of the Mooney viscosity, the predic-

tion values of EGPR, GPR, and SVM methods for test samples

are shown in Figure 6. As analyzed previously, the viscosity

information often exhibited different characteristics because it

was very sensitive to process conditions and operations from

raw materials to the end discharge.1–14 In this case, samples

1–29 belonged to one recipe. Samples 30–49 were in the other

recipe. As shown in Figure 6, the tendencies of the EGPR pre-

diction values and the assay values were more similar. However,

neither the GPR nor SVM method could capture the tendencies

in these two recipes.

To further show the prediction performance of EGPR, two

recent soft sensors were adopted for comparison. One was a

mixture GPR-based multimodel, called combined local Gaussian

process regression (CLGPR).30 The principle component analysis

was used to combine the local GPR models for online predic-

tion. The CLGPR model exhibited better prediction perform-

ance than single local GPR models through applications to a

Figure 4. Parity plot based on assay values against the prediction values

in the test set with EGPR-based multimodels and single GPR/SVM mod-

els. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5. Comparison between the prediction error distributions of the

Mooney viscosity with a box plot with EGPR-based multimodels, the sin-

gle GPR model, and the single SVM model. The edges of each box are the

first and third quartiles, and the band inside the box shows the median.

The whiskers above and below the box show the locations of the mini-

mum and maximum. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Table I. Mooney Viscosity Online Prediction: Performance Comparison

with Popular Global Soft-Sensor Models

Method RMSE RE (%) MAE

EGPR 2.01 4.17 4.02

GPR12,28 3.44 6.99 11.81

SVM9 3.37 6.88 11.38

The best prediction performance is bolded and underlined.
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polypropylene production process.30 However, the prediction

uncertainty was omitted. If some test samples show different

characteristics from the training samples, the prediction accu-

racy will be degraded. The other method for comparison is inte-

gration of the independent component regression (ICR) and

GPR into an ICR–GPR prediction model. The ICR–GPR model

shows better prediction performance than the traditional ICR

and GPR models.13 Nevertheless, ICR–GPR is a fixed global

model. The non-Gaussian information that exists in different

recipes may be different. It is relatively difficult to capture all

the non-Gaussian and nonlinear information with only a model.

Additionally, the probabilistic information of GPR was not used

in previous research. The details about online prediction com-

parisons of the Mooney viscosity among EGPR, CLGPR, and

ICR–GPR methods are listed in Table II. Both of CLGPR and

ICR–GPR methods exhibit a better prediction performance than

only a GPR model. Moreover, the results of the RMSE, RE, and

MAE indices show that the EGPR model can achieve a more

accurate prediction performance than the other methods.

Finally, the detailed results of the online Mooney viscosity pre-

diction for the test data set with the EGPR prediction model

are shown in Figure 7. The upper line and lower line show

ŷi 1 rŷi and ŷi 2 rŷi, respectively. Correspondingly, the compari-

sons of the RPV values of the EGPR-based soft sensor for online

prediction of all the test samples are shown in Figure 8 [defined

in eq. (12)]. The proposed RPV item can provide additional

information for the evaluation of prediction models. As shown

in Figures 7 and 8, the test samples 30–49 generally exhibited a

larger prediction uncertainty (cf. test samples 1–29). Actually,

this recipe, which included several shifts, was much different

from the previous recipes in this process. As also shown in Fig-

ure 3, these test samples were much different from those train-

ing samples. With the proposed simple RPV index, operators

and engineers can determine whether the prediction is good or

bad before the laboratory analysis results are available. In our

opinion, it is unnecessary to further analyze the samples in the

Figure 6. Comparison results of EGPR, GPR, and SVM soft-sensor mod-

els for the online prediction of the Mooney viscosity in the industrial

rubber-mixing process (the test data set). [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

Table II. Mooney Viscosity Online Prediction: Performance Comparison

with Two Recent Prediction Models

Method RMSE RE (%) MAE

EGPR 2.01 4.17 4.02

CLGPR30 2.47 5.26 6.23

ICR–GPR13 3.05 6.12 9.41

The best prediction performance is bolded and underlined.

Figure 7. Online prediction of the Mooney viscosity in the industrial

rubber-mixing process with the EGPR prediction model (the test data

set).

Figure 8. Comparisons of the RPV values of the EGPR-based soft sensor

for the online prediction of all of the test samples in the industrial

rubber-mixing process. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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laboratory if the RPV values are always very small because this

indicates that the prediction model performs well for these

samples.

Unlike the traditional soft sensors, for example, PLS, ANN, and

SVM/LSSVM,3–14 the GPR-based soft sensor can provide proba-

bilistic information for its prediction.28 The proposed RPV

index is important for soft sensors because the probabilistic

information can help operators/engineers use the prediction in

a better way. Therefore, from all of the obtained results, the

proposed EGPR method showed a better and more reliable pre-

diction performance than the other soft sensors in terms of the

online Mooney viscosity prediction for an industrial rubber-

mixing process.

One assumption is that the outlier samples have been removed

from the modeling data set. The determination of how to auto-

matically detect and reconcile both input and output measure-

ment biases and misalignments with some novel strategies, for

example, the Correntropy concept,39 is one of our future direc-

tions. Additionally, the feature extraction can be further investi-

gated to improve prediction performance. If available, some

domain knowledge and expert rules can also be combined into

the soft-sensor modeling methods. So, there are still several

interesting research directions worth investigating in the future

to further enhance the accuracy and transparency of a reliable

prediction model for rubber-mixing processes.

CONCLUSIONS

In this study, we developed a novel ensemble probabilistic pre-

diction model for the Mooney viscosity in rubber-mixing proc-

esses. Two main distinguishing characteristics can be

summarized. First, the EGPR-based multimodeling method

could better handle multiple recipes with different process char-

acteristics. Second, the prediction uncertainty was analyzed and

integrated into the EGPR method to enhance the prediction

reliability. Consequently, the EGPR model could effectively

reduce the variance error of prediction compared to the use of

only a global GPR model. The superiority of EGPR was demon-

strated through an online Mooney viscosity prediction of an

industrial rubber-mixing process with multiple recipes. Com-

pared with several existing approaches, better and more reliable

prediction performance of EGPR was obtained.
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